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Let /i be an order over a domain R in a finite dimensional algebra A over the 
quotient field K or R, and let M be a left /l-lattice. We generalize the work of D. 
Haile in [4] by associating to M an ideal H(M) in R called the closed socle of M. The 
closed socle of A4 is defined as follows. A left /l-submodule N of A4 is called minimal 
closed if N= L nil4 for some minimal A-submodule L of KM. If X(M) denotes the 
sum of the minimal closed /l-submodules of M, then H(M)=Ann&4/X(M)). If 
M =_4 then as in [4] one has H(/i) =X(A)nR. 

The closed socle appears to be a fairly subtle invariant and most of this paper is 
devoted to a study of the relationship between the structure of n and H(M) under 
various hypotheses on R, A and M. After giving some preliminary results, we show 
that if /1, and /12 are Morita equivalent orders then H(/1 i) = H(/i2) = H(M) where M 
is any /1, (A,) progenerator. if /1 is a maximal order over the Dedekind domain R in 
a central simple algebra A over the quotient field K of R then H(/i) =R. If R is a 
complete local ring and M is a projective /l-lattice, then H(M) = R if and only if M 
is a finite direct sum of minimal closed sublattices. Thus /1 is a direct sum of 
minimal closed left ideals if and only if Zf(/1) = R. If G is a finite group of order = n 
and RG is the group ring then H(RG) = n. R. Thus, H(RG) = R if and only if RG is 
a maximal order in KG. Generalizing 3.2 of [4], we show that if R is an integrally 
closed Noetherian domain and /1 is a projective maximal R-order in M,(K), then 
H(A) is contained in the singular locus of R. We give an example of an order /1 over 
a discrete valuation ring R with H(,4) = R yet /i is not either maximal nor a direct 
sum of minimal closed left ideals. 

Throughout, all undefined terminology and notation will be as in [6]. H. Bass 
read an earlier version of this paper and made several helpful suggestions. 

Section 1 

Keep the notation and terminology of the introduction. 
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Definition 1. A left A-submodule N of the A-lattice M is called closed if it satisfies 
one of the following equivalent conditions. 

1. For any O+rER and mEM, if rmEN then meN. 
2. There is an A submodule L of KM with LnM=N. 

The equivalence of the definition and the next six results are straightforward 
generalizations of the corresponding results in [4]. 

Lemma 1. There is a one-to-one order preserving correspondence between the left 
A-submodules L of KM and the closed left A-submodules N of M given by 

L-L,nM, N-K. N. 

Since KM is a finitely generated A-module, KM satisfies the descending chain 
condition on submodules. Thus minimal closed submodules of M exist and are of 
the form LnM for some minimal submodule L of KM. 

Definition 2. Let X(M) denote the sum of all the minimal closed /i-submodules of 
M. Let the closed socle H(M) of M be AnnR(M/X(M)). 

Lemma 2. Y(A) is a two-sided ideal of A. 

Let Y be the sum of the minimal submodules of KM. If 9 #KM then 
AnnR(KM/Y)=O so by an easy argument AnnR(M/Y(M)) =O. If _‘9 = KM and 

mi, .., , ml generate M over R then for each i, mi= C l,j where l,j E Lj with Lj a 
minimal A-submodule of KM. If we write I, = mi,j/ri,j with mi.j EM and ri,j E R 
then O# r = n,,j ri,j E H(M) SO H(M) + (0). 

It follows that H(M) # 0 if and only if KM is semisimple. 

Lemma 3. Let S be a multiplicative subset of R not containing 0. Then there is a 
one-to-one order preserving correspondence between the closed submodules N of M 
and the closed submodules N’ of S-.‘M given by 

N-+RsN, N’+N’nM. 

Lemma 4. Let S be a multiplicative subset of R not containing 0, then H(S-‘M) = 
S-‘H(M). 

Proof. 

H(S-‘M) = Ann,+-‘M/X@-‘M)) 

= Ann,+-‘M/S-i_??(M)) by Lemma 3 

= Ann&Rs@M/Y(M)) = Rs@ AnnR(M/X’(M)) = S-‘H(M). 
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Lemma 5. Let p be a prime ideal in R, then H(M,) = H(M),. 

Lemma 6. H(M) = n, H(M,) where p ranges over the maximal ideals of R. 

Proof. By Corollary 4, Section 3.3, Chapter II of [2] we have H(M) = n, H(M),,. 
From Lemma 5, H(M)r= H(M,) and the lemma follows. 

We have let X’(M) be the sum of the minimal closed submodules of M. 

Lemma 7. (a) X(M) = c , “_,+, f(N) where N runs through all A-modules so that :, 
K@ N is a simple A-module and f is any A-homomorphism. 

(b) ZfM=M,@M2 then X(M)=.#‘(M,)@X(M2). 

Proof. Let N be a A-module with K@N simple over A and f: N+M a A-homo- 
morphism. Then l@f(K@N) = K@ f(N) is trivial or a simple A-submodule of 
K@ M so by Lemma 1 we have f(N) is trivial or a minimal closed submodule of M. 
Thus &,,+ f(N) =3(M). 

For part (b), 

XVf) = ,:.yc Mf(N) = c (f 1 +fz)(N) 
f,+j*:N-iM 

where fi = z;f, Xi the projection of M on M;. Thus 

~(M)=,,+,~;~_,Wfi(N)Of2(N)=~~(M~)Ok”(M2). 

Proposition 1. (a) Zf E is a A-progenerator then H(E) = H(A). 
(b) Zf Z is an R-order Morita equivalent to A then H(A) = H(Z). 

Proof. Let E be a A-progenerator, then E@ E’=A@) for some n. By Lemma 
7(b) we have Y(E) @ P(E’) = #(A(“)) = -Y/‘(A)(“). If r E AnnR(A/X(A)) then 
r E AnnR(A”/X’(An)) so one can check rE AnnR(E/Y(E)) and H(A) c H(E). Again, 
since E is a progenerator, A@A’=E trn) for some m so arguing as above 
H(E) c H(A). 

For part (b) let E be a A-lattice and p : ,,_//+,-.A a Morita equivalence. By 
symmetry together with (a) it suffices to show H(E) c H(p(E)). By Lemma 7(a), 

It follows that &Y(E)) =.Y(u(E)) since one can conclude from the diagram 
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that K@@’ is a simple A 1 =K@ f--module if and only if K@N is a simple A- 
module. Let P be a right A-progenerator giving the equivalence p so p(E) = Pa,, E. 
Then 

H(E) = AnnR(E/.r/lE)) c AnnR(P@,, E/P@,,.y(E)) 

= Ann&u(E)/u(~(E))) = Aw&.t(E)~r/lu(E)) = H(u(E)). 

Theorem 1. Let A be an R-order in a semi-simple algebra A over the quotient field 

K of R. If H(A) = R then A is a direct sum of orders in the simple factors of A. 

Proof. Let A =A,@-..@A, be a decomposition of A into its simple factors, let 
nj:A~Aibetheprojections,let~i=ni(/l),andii=~IO...0/1,.IfLisaminimal 
left ideal of A, then L is an A;-module for some i. Thus LfIA is an Ai-module and 
hence a A-module. Thus ~$4) is a /T ideal contained in A so Y(A) c Ann.t(A/A). If 
H(A)=R then.Y(A)=A soA=Ann,,(ii/A). But 1eA soii=A. 

Theorem 2. Let A be a maximal order over the Dedekind domain R in the central 
simple algebra A over the quotient field K of R, then H(A) = R. 

Proof. Wo assume first that R is a discrete valuation ring. If A =M,,(D), D a division 
algebra over K, let D=@y=, Kxt, M= cy=1 RXi. Then rl,(M)= {dtzD / dMc M} is 
an R-order in D, contained, say, in the maximal R-order E of D. Then M,,(E) is a 
maximal R-order in A, and by Theorem 18.7 in [6], every other order which is 
maximal in A is of the form aM,(E)a-‘, for some aE A. Thus, by Proposition l(b), 
we have that H(A) = H(aM,,(E)a-‘) = H(M,(E)) = H(E) = R. 

Assume now that R is a Dedekind domain. Then R, is a discrete valuation ring for 
every maximal ideal P or R and A, is a maximal R,-order (see (61). Hence, as above, 
H(A,) = R,, and by Lemma 6 we have that H(A) = n, H(A,) = n, R, = R. 

Theorem 10.5 of [6] implies that the conclusion of Theorem 2 remains valid if A is 
a direct sum of central simple K-algebras. 

Theorem 3. Let R be a complete local ring and let M be a projective lattice over the 
R-order A. Then H(M) = R if and only if M is a direct sum of minimal closed 
submodules. Thus H(A) = R if and only if A is a direct sum of minimal left ideals. 

Proof. If M is a direct sum of minimal closed submodules then H(M) =R. 
Conversely, suppose H(M) =R, then X(M)=M. Since M is finitely generated we 
can find minimal closed submodules N,, . . . ,N, of M with M= ZV, + e.0 + IV,. The 
natural epimorphism f : N,@ --- @Nt +M splits so M@M’zN,@-..@N,. By the 
Krull-Schmidt-Remak theorem M is isomorphic to a direct sum of some subset 
Of {Ni). 
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We thank Irving Reiner for suggesting the following line of proof of the next 
result. 

Theorem 4. Let G be a finite group of order n and R an integrally closed Noetherian 
domain with quotient field K. Then H(RG) = n. R. Thus H(RG) = R if and only if 
RG is a maximal order in KG. 

Proof. If char K ( n then KG is not semi-simple and H(RG) = nR = (0). Otherwise, A 

is separable K-algebra. 
Let A = @r=, Ae;, with I:=, e; = 1, eiej = au, where 6,; is the Kronecker delta. Let 

.2’(A) be the sum of the minimal closed left ideals I of A. Then .X(,4) = c, I n/l, 
where I ranges over all minimal left ideals of A. Since A is semi-simple, Z=Ae for 
some primitive idempotent e of A. Thus .X’(A) = 1, (Aefl A), where e ranges over all 
primitive idempotents of A. First we show that for every ei we have 1 G / e; E Ae; fl A. 
If eEA is an idempotent of A, then since e is integral over R, R[e] is a finitely 
generated R-module and subring of A. Let M=RG a full R-lattice in A, then 
Me R[e] is a full R-lattice in A and so e is contained in some maxima1 R-order A I. 
NowsinceRGcAt,then IGIAtCRGandso IG/.eERG(seeTheorem41.1 in[6]). 
Hence lGle~(AenA) for every idempotent in A. (Gje;~Ae~nA, for every i, 
impliesthat IG].l=IGl(e,+ . ..+e.)EY(A)=z,AenA andso IGI.RcY(A). 

We now show the reverse inclusion. Let a E .~(/l) Cl R and e. = 1 G / -* C,, G x be the 
central primitive idempotent in A. 

Let ii = RGeo@ -.+@RGe, where the ei are central primitive idempotents 
in KG. As we saw in the proof of Theorem 1, -w(A) is a ii-module so Y(A)= 
X(A)et @ ...@ &4)e,. Let a~.,Y’(A). Then aeoEI’(A)CA so aEn.RG. Since 
X(RG) C n. RG, we have H(RG) =Y’(RG)n R C n. R. 

Theorem 5. Let R be a Noetherian integrally closed domain and A a projective 
maximal R-order in M,,(K) where K is the quotient field of R. Then H(A) is 
contained in the singular locus of R. 

Proof. It follows from Lemma 5 that it suffices to show H(AP) =R, for every 
regular prime ideal p of R. But AP is projective and maxima1 over R, so by Theorem 
4.3 of [l], A,= Hom,(E,E) with E a finitely generated projective R, module. By 
Lemma 2 of (31, H(A,) = R,. 

We conclude by giving an example of an order /1 over a discrete valuation ring R 
such that H(A) = R, yet A is not a direct sum of minimal closed left ideals. 

Let 

A= 
a+5e b+Sf 

-b+Sg a+5h >I 
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View /1 as a Z(,, order in Mz(Q). The elements 

generate minimal closed left ideals in A and 

(:, Y)=(i i)-(1 :>-(-: -:> 
so H(A) =R. However, one can calculate directly that ,4 has no idempotents but 

so A is not a direct sum of minimal closed left ideals. 
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