THE CLOSED SOCLE OF AN ORDER

Frank R. DeMEYER
Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

Christos NIKOLOPOULOS
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Communicated by H. Bass
Received 17 July 1981

Let Λ be an order over a domain R in a finite dimensional algebra A over the quotient field K or R, and let M be a left Λ-lattice. We generalize the work of D . Haile in [4] by associating to M an ideal $H(M)$ in R called the closed socle of M. The closed socle of M is defined as follows. A left Λ-submodule N of M is called minimal closed if $N=L \cap M$ for some minimal A-submodule L of $K M$. If $\mathscr{H}(M)$ denotes the sum of the minimal closed Λ-submodules of M, then $H(M)=\operatorname{Ann}_{R}(M / \mathscr{H}(M))$. If $M=\Lambda$ then as in [4] one has $H(\Lambda)=\mathscr{H}(\Lambda) \cap R$.

The closed socle appears to be a fairly subtle invariant and most of this paper is devoted to a study of the relationship between the structure of Λ and $H(M)$ under various hypotheses on R, Λ and M. After giving some preliminary results, we show that if Λ_{1} and Λ_{2} are Morita equivalent orders then $H\left(\Lambda_{1}\right)=H\left(\Lambda_{2}\right)=H(M)$ where M is any $\Lambda_{1}\left(\Lambda_{2}\right)$ progenerator. If Λ is a maximal order over the Dedekind domain R in a central simple algebra A over the quotient field K of R then $H(A)=R$. If R is a complete local ring and M is a projective Λ-lattice, then $H(M)=R$ if and only if M is a finite direct sum of minimal closed sublattices. Thus Λ is a direct sum of minimal closed left ideals if and only if $H(\Lambda)=R$. If G is a finite group of order $=n$ and $R G$ is the group ring then $H(R G)=n \cdot R$. Thus, $H(R G)=R$ if and only if $R G$ is a maximal order in $K G$. Generalizing 3.2 of [4], we show that if R is an integrally closed Noetherian domain and Λ is a projective maximal R-order in $M_{n}(K)$, then $H(\Lambda)$ is contained in the singular locus of R. We give an example of an order Λ over a discrete valuation ring R with $H(\Lambda)=R$ yet Λ is not either maximal nor a direct sum of minimal closed left ideals.

Throughout, all undefined terminology and notation will be as in [6]. H. Bass read an earlier version of this paper and made several helpful suggestions.

Section 1

Keep the notation and terminology of the introduction.

Definition 1. A left Λ-submodule N of the Λ-lattice M is called closed if it satisfies one of the following equivalent conditions.

1. For any $0 \neq r \in R$ and $m \in M$, if $r m \in N$ then $m \in N$.
2. There is an A submodule L of $K M$ with $L \cap M=N$.

The equivalence of the definition and the next six results are straightforward generalizations of the corresponding results in [4].

Lemma 1. There is a one-to-one order preserving correspondence between the left A-submodules L of $K M$ and the closed left Λ-submodules N of M given by

$$
L \rightarrow L \cap M, \quad N \rightarrow K \cdot N
$$

Since $K M$ is a finitely generated A-module, $K M$ satisfies the descending chain condition on submodules. Thus minimal closed submodules of M exist and are of the form $L \cap M$ for some minimal submodule L of $K M$.

Definition 2. Let $\mathscr{H}(M)$ denote the sum of all the minimal closed A-submodules of M. Let the closed socle $H(M)$ of M be $\mathrm{Ann}_{R}(M / \mathscr{K}(M))$.

Lemma 2. $\mathscr{H}(\Lambda)$ is a two-sided ideal of Λ.

Let \mathscr{F} be the sum of the minimal submodules of $K M$. If $\mathscr{F} \neq K M$ then $\mathrm{Ann}_{R}(K M / \mathscr{J})=0$ so by an easy argument $\mathrm{Ann}_{R}(M / \mathscr{H}(M))=0$. If $\mathscr{y}=K M$ and m_{1}, \ldots, m_{l} generate M over R then for each $i, m_{i}=\sum l_{i, j}$ where $l_{i, j} \in L_{j}$ with L_{j} a minimal Λ-submodule of $K M$. If we write $l_{i j}=m_{i, j} / r_{i, j}$ with $m_{i, j} \in M$ and $r_{i, j} \in R$ then $0 \neq r=\prod_{i, j} r_{i, j} \in H(M)$ so $H(M) \neq(0)$.

It follows that $H(M) \neq 0$ if and only if $K M$ is semisimple.
Lemma 3. Let S be a multiplicative subset of R not containing 0 . Then there is a one-to-one order preserving correspondence between the closed submodules N of M and the closed submodules N^{\prime} of $S^{-1} M$ given by

$$
N \rightarrow R_{S} N, \quad N^{\prime} \rightarrow N^{\prime} \cap M
$$

Lemma 4. Let S be a multiplicative subset of R not containing 0 , then $H\left(S^{-1} M\right)=$ $S^{-1} H(M)$.

Proof.

$$
\begin{aligned}
H\left(S^{-1} M\right) & =\operatorname{Ann}_{R_{S}}\left(S^{-1} M / \mathscr{H}\left(S^{-1} M\right)\right) \\
& =\operatorname{Ann}_{R_{S}}\left(S^{-1} M / S^{-1} \mathscr{H}(M)\right) \quad \text { by Lemma } 3 \\
& =\operatorname{Ann}_{R_{S}}\left(R_{S} \otimes M / \mathscr{H}(M)\right)=R_{S} \otimes \operatorname{Ann}_{R}(M / \mathscr{H}(M))=S^{-1} H(M) .
\end{aligned}
$$

Lemma 5. Let p be a prime ideal in R, then $H\left(M_{p}\right)=H(M)_{p}$.
Lemma 6. $H(M)=\bigcap_{\rho} H\left(M_{p}\right)$ where p ranges over the maximal ideals of R.
Proof. By Corollary 4, Section 3.3, Chapter II of [2] we have $H(M)=\bigcap_{p} H(M)_{p}$. From Lemma 5, $H(M)_{p}=H\left(M_{p}\right)$ and the lemma follows.

We have let $\mathscr{H}(M)$ be the sum of the minimal closed submodules of M.
Lemma 7. (a) $\mathscr{H}(M)=\sum_{f: v \rightarrow M} f(N)$ where N runs through all Λ-modules so that $K \otimes N$ is a simple A-module and f is any Λ-homomorphism.
(b) If $M=M_{1} \oplus M_{2}$ then $\mathscr{H}(M)=\mathscr{H}\left(M_{1}\right) \oplus \mathscr{H}\left(M_{2}\right)$.

Proof. Let N be a A-module with $K \otimes N$ simple over A and $f: N \rightarrow M$ a Λ-homomorphism. Then $1 \otimes f(K \otimes N)=K \otimes f(N)$ is trivial or a simple A-submodule of $K \otimes M$ so by Lemma 1 we have $f(N)$ is trivial or a minimal closed submodule of M. Thus $\sum_{f: M \rightarrow N} f(N)=\mathscr{H}(M)$.

For part (b),

$$
\mathscr{H}(M)=\sum_{f: N \rightarrow M} f(N)=\sum_{f_{1}+f_{2}: N \rightarrow M}\left(f_{1}+f_{2}\right)(N)
$$

where $f_{i}=\pi_{i} f, \pi_{i}$ the projection of M on M_{i}. Thus

$$
\mathscr{H}(M)=\sum_{f_{1}+f_{2}: N-M} f_{1}(N) \oplus f_{2}(N)=\mathscr{H}\left(M_{1}\right) \oplus \mathscr{H}\left(M_{2}\right) .
$$

Proposition 1. (a) If E is a Λ-progenerator then $H(E)=H(\Lambda)$.
(b) If Γ is an R-order Morita equivalent to Λ then $H(\Lambda)=H(\Gamma)$.

Proof. Let E be a A-progenerator, then $E \oplus E^{\prime}=\Lambda^{(n)}$ for some n. By Lemma 7(b) we have $\mathscr{H}(E) \oplus \mathscr{H}\left(E^{\prime}\right)=\mathscr{H}\left(\Lambda^{(n)}\right)=\mathscr{H}(\Lambda)^{(n)}$. If $r \in \mathrm{Ann}_{R}(\Lambda / \mathscr{H}(\Lambda))$ then $r \in \operatorname{Ann}_{R}\left(\Lambda^{n} / \mathscr{H}\left(\Lambda^{n}\right)\right.$) so one can check $r \in \operatorname{Ann}_{R}(E / \mathscr{H}(E))$ and $H(\Lambda) \subset H(E)$. Again, since E is a progenerator, $\Lambda \oplus \Lambda^{\prime}=E^{(m)}$ for some m so arguing as above $H(E) \subset H(\Lambda)$.

For part (b) let E be a A-lattice and $\mu:{ }_{\Lambda} M \rightarrow \Gamma M$ a Morita equivalence. By symmetry together with (a) it suffices to show $H(E) \subseteq H(\mu(E)$). By Lemma 7(a),

$$
\mu(\mathscr{H}(E))=\mu\left(\sum_{f: N \rightarrow E} f(N)\right)=\sum_{\mu f: \mu N \rightarrow \mu E} \mu f(\mu N) .
$$

It follows that $\mu(\mathscr{H}(E))=\mathscr{N}(\mu(E))$ since one can conclude from the diagram

that $K \otimes \mu N$ is a simple $A_{1}=K \otimes \Gamma$-module if and only if $K \otimes N$ is a simple A module. Let P be a right Λ-progenerator giving the equivalence μ so $\mu(E)=P \otimes_{A} E$. Then

$$
\begin{aligned}
H(E) & =\operatorname{Ann}_{R}(E / \mathscr{H}(E)) \subseteq \operatorname{Ann}_{R}\left(P \otimes_{1} E / P \otimes_{1} \not \mathscr{H}(E)\right) \\
& =\operatorname{Ann}_{R}(\mu(E) / \mu(\mathscr{H}(E)))=\operatorname{Ann}_{R}(\mu(E) / \mathscr{H}(\mu(E))=H(\mu(E)) .
\end{aligned}
$$

Theorem 1. Let A be an R-order in a semi-simple algebra A over the quotient field K of R. If $H(\Lambda)=R$ then Λ is a direct sum of orders in the simple factors of A.

Proof. Let $A=A_{1} \oplus \cdots \oplus A_{\text {, }}$ be a decomposition of A into its simple factors, let $\pi_{i}: A \rightarrow A_{i}$ be the projections, let $\Lambda_{i}=\pi_{i}(\Lambda)$, and $\bar{\Lambda}=\Lambda_{1} \oplus \cdots \oplus \Lambda_{t}$. If L is a minimal left ideal of A, then L is an A_{i}-module for some i. Thus $L \cap A$ is an Λ_{i}-module and hence a $\bar{\Lambda}$-module. Thus $\mathscr{H}(\Lambda)$ is a $\bar{\Lambda}$ ideal contained in Λ so $\mathscr{H}(\Lambda) \subseteq \mathrm{Ann}_{11}(\bar{\Lambda} / \Lambda)$. If $H(\Lambda)=R$ then $\mathscr{H}(\Lambda)=\Lambda$ so $\Lambda=\operatorname{Ann}_{\Lambda}(\bar{\Lambda} / \Lambda)$. But $l \in \Lambda$ so $\bar{\Lambda}=\Lambda$.

Theorem 2. Let Λ be a maximal order over the Dedekind domain R in the central simple algebra A over the quotient field K of R, then $H(A)=R$.

Proof. We assume first that R is a discrete valuation ring. If $A=M_{n}(D), D$ a division algebra over K, let $D=\bigoplus_{i=1}^{n} K x_{i}, M=\sum_{i=1}^{n} R x_{i}$. Then $\epsilon_{e}^{\prime}(M)=\{d \in D \mid d M \subseteq M\}$ is an R-order in D, contained, say, in the maximal R-order E of D. Then $M_{n}(E)$ is a maximal R-order in A, and by Theorem 18.7 in [6], every other order which is maximal in Λ is of the form $a M_{n}(E) a^{-1}$, for some $a \in A$. Thus, by Proposition 1(b), we have that $H(\Lambda)=H\left(a M_{n}(E) a^{-1}\right)=H\left(M_{n}(E)\right)=H(E)=R$.

Assume now that R is a Dedekind domain. Then R_{p} is a discrete valuation ring for every maximal ideal P or R and Λ_{p} is a maximal R_{p}-order (see [6]). Hence, as above, $H\left(\Lambda_{p}\right)=R_{p}$, and by Lemma 6 we have that $H(\Lambda)=\bigcap_{p} H\left(\Lambda_{p}\right)=\bigcap_{p} R_{p}=R$.

Theorem 10.5 of [6] implies that the conclusion of Theorem 2 remains valid if A is a direct sum of central simple K-algebras.

Theorem 3. Let R be a complete local ring and let M be a projective lattice over the R-order Λ. Then $H(M)=R$ if and only if M is a direct sum of minimal closed submodules. Thus $H(\Lambda)=R$ if and only if Λ is a direct sum of minimal left ideals.

Proof. If M is a direct sum of minimal closed submodules then $H(M)=R$. Conversely, suppose $H(M)=R$, then $\mathscr{H}(M)=M$. Since M is finitely generated we can find minimal closed submodules N_{1}, \ldots, N_{t} of M with $M=N_{1}+\cdots+N_{t}$. The natural epimorphism $f: N_{1} \oplus \cdots \oplus N_{t} \rightarrow M$ splits so $M \oplus M^{\prime} \cong N_{1} \oplus \cdots \oplus N_{t}$. By the Krull-Schmidt-Remak theorem M is isomorphic to a direct sum of some subset of $\left\{N_{i}\right\}$.

We thank lrving Reiner for suggesting the following line of proof of the next result.

Theorem 4. Let G be a finite group of order n and R an integrally closed Noetherian domain with quotient field K. Then $H(R G)=n \cdot R$. Thus $H(R G)=R$ if and only if $R G$ is a maximal order in $K G$.

Proof. If char $K \mid n$ then $K G$ is not semi-simple and $H(R G)=n R=(0)$. Otherwise, A is separable K-algebra.

Let $A=\oplus_{i=1}^{n} A e_{i}$, with $\sum_{i=1}^{n} e_{i}=1, e_{i} e_{j}=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta. Let $\mathscr{H}(\Lambda)$ be the sum of the minimal closed left ideals I of Λ. Then $\nVdash(\Lambda)=\sum_{I} I \cap \Lambda$, where I ranges over all minimal left ideals of A. Since A is semi-simple, $I=A e$ for some primitive idempotent e of A. Thus $\mathscr{H}(\Lambda)=\Sigma_{e}(A e \cap \Lambda)$, where e ranges over all primitive idempotents of A. First we show that for every e_{i} we have $|G| e_{i} \in A e_{i} \cap \Lambda$. If $e \in A$ is an idempotent of A, then since e is integral over $R, R[e]$ is a finitely generated R-module and subring of A. Let $M=R G$ a full R-lattice in A, then $M \cdot R[e]$ is a full R-lattice in A and so e is contained in some maximal R-order Λ_{1}. Now since $R G \subseteq \Lambda_{1}$, then $|G| \Lambda_{1} \subseteq R G$ and so $|G| \cdot e \in R G$ (see Theorem 41.1 in [6]). Hence $|G| e \in(A e \cap \Lambda)$ for every idempotent in $A .|G| e_{i} \in A e_{i} \cap \Lambda$, for every i, implies that $|G| \cdot 1=|G|\left(e_{1}+\cdots+e_{n}\right) \in \mathscr{H}(\Lambda)=\sum_{e} A e \cap \Lambda$ and so $|G| \cdot R \subseteq \mathscr{H}(\Lambda)$.

We now show the reverse inclusion. Let $a \in \mathscr{H}(A) \cap R$ and $e_{0}=|G|^{-1} \sum_{x \in G} x$ be the central primitive idempotent in A.

Let $\bar{A}=R G e_{0} \oplus \cdots \oplus R G e_{n}$ where the e_{i} are central primitive idempotents in $K G$. As we saw in the proof of Theorem $1, \mathscr{H}(\Lambda)$ is a $\bar{\Lambda}$-module so $\mathscr{H}(\Lambda)=$ $\mathscr{H}(\Lambda) e_{1} \oplus \cdots \oplus \mathscr{H}(\Lambda) e_{n}$. Let $a \in \mathscr{H}(\Lambda)$. Then $a e_{0} \in \mathscr{H}(\Lambda) \subset \Lambda$ so $a \in n \cdot R G$. Since $\mathscr{H}(R G) \subset n \cdot R G$, we have $H(R G)=\mathscr{H}(R G) \cap R \subset n \cdot R$.

Theorem 5. Let R be a Noetherian integrally closed domain and Λ a projective maximal R-order in $M_{n}(K)$ where K is the quotient field of R. Then $H(\Lambda)$ is contained in the singular locus of R.

Proof. It follows from Lemma 5 that it suffices to show $H\left(\Lambda_{p}\right)=R_{p}$ for every regular prime ideal p of R. But Λ_{p} is projective and maximal over R_{p} so by Theorem 4.3 of [1], $\Lambda_{p}=\operatorname{Hom}_{R_{p}}(E, E)$ with E a finitely generated projective R_{p} module. By Lemma 2 of [3], $H\left(\Lambda_{p}\right)=R_{p}$.

We conclude by giving an example of an order Λ over a discrete valuation ring R such that $H(\Lambda)=R$, yet Λ is not a direct sum of minimal closed left ideals.

Let

$$
\Lambda=\left\{\left.\left(\begin{array}{rr}
a+5 e & b+5 f \\
-b+5 g & a+5 h
\end{array}\right) \right\rvert\, a, b, e, f, g, h \in \mathbb{Z}_{5}\right\} .
$$

View Λ as a $\mathbb{Z}_{(5)}$ order in $M_{2}(\mathbb{Q})$. The elements

$$
\left(\begin{array}{rr}
2 & -4 \\
-1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 5
\end{array}\right)
$$

generate minimal closed left ideals in Λ and

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)-\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right)-\left(\begin{array}{rr}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

so $H(\Lambda)=R$. However, one can calculate directly that Λ has no idempotents but

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

so Λ is not a direct sum of minimal closed left ideals.

References

[1] M. Auslander and O. Goldman, Maximal Orders, Trans. Amer. Math. Soc. 97 (1960) 1-24.
[2] N. Bourbaki, Elements de Mathematique, Algèbre Commutative (Hermann, Paris, 1964).
[3] F.R. DeMeyer, The closed socle of an Azumaya algebra, Proc. Amer. Math. Soc. 78 (3) (1980) 299-303.
[4] F.R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Math. No. 181 (Springer, Berlin-New York, 1971).
[5] D. Haile, The closed socle of a central separable algebra, J. Algebra 51 (1978) 97-106.
[6] I. Reiner, Maximal orders (Academic Press, New York, 1975).
[7] K.W. Roggenkamp and V.H. Dyson, Lattices over Orders I, Lecture Notes in Mach. No. 115 (Springer, Berlin-New York, 1970).

