THE CLOSED SOCLE OF AN ORDER

Frank R. DeMEYER

Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

Christos NIKOLOPOULOS

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Communicated by H. Bass Received 17 July 1981

Let Λ be an order over a domain R in a finite dimensional algebra A over the quotient field K or R, and let M be a left Λ -lattice. We generalize the work of D. Haile in [4] by associating to M an ideal H(M) in R called the closed socle of M. The closed socle of M is defined as follows. A left Λ -submodule N of M is called minimal closed if $N = L \cap M$ for some minimal A-submodule L of KM. If $\mathscr{H}(M)$ denotes the sum of the minimal closed Λ -submodules of M, then $H(M) = \operatorname{Ann}_R(M/\mathscr{H}(M))$. If $M = \Lambda$ then as in [4] one has $H(\Lambda) = \mathscr{H}(\Lambda) \cap R$.

The closed socle appears to be a fairly subtle invariant and most of this paper is devoted to a study of the relationship between the structure of Λ and H(M) under various hypotheses on R, Λ and M. After giving some preliminary results, we show that if Λ_1 and Λ_2 are Morita equivalent orders then $H(\Lambda_1) = H(\Lambda_2) = H(M)$ where Mis any $\Lambda_1(\Lambda_2)$ progenerator. If Λ is a maximal order over the Dedekind domain R in a central simple algebra Λ over the quotient field K of R then $H(\Lambda) = R$. If R is a complete local ring and M is a projective Λ -lattice, then H(M) = R if and only if Mis a finite direct sum of minimal closed sublattices. Thus Λ is a direct sum of n_1 nimial closed left ideals if and only if $H(\Lambda) = R$. If G is a finite group of order = nand RG is the group ring then $H(RG) = n \cdot R$. Thus, H(RG) = R if and only if RG is a maximal order in KG. Generalizing 3.2 of [4], we show that if R is an integrally closed Noetherian domain and Λ is a projective maximal R-order in $M_n(K)$, then $H(\Lambda)$ is contained in the singular locus of R. We give an example of an order Λ over a discrete valuation ring R with $H(\Lambda) = R$ yet Λ is not either maximal nor a direct sum of minimal closed left ideals.

Throughout, all undefined terminology and notation will be as in [6]. H. Bass read an earlier version of this paper and made several helpful suggestions.

Section 1

Keep the notation and terminology of the introduction.

0022-4049/82/0000-0000/\$02.75 © 1982 North-Holland

Definition 1. A left Λ -submodule N of the Λ -lattice M is called closed if it satisfies one of the following equivalent conditions.

- 1. For any $0 \neq r \in R$ and $m \in M$, if $rm \in N$ then $m \in N$.
- 2. There is an A submodule L of KM with $L \cap M = N$.

The equivalence of the definition and the next six results are straightforward generalizations of the corresponding results in [4].

Lemma 1. There is a one-to-one order preserving correspondence between the left A-submodules L of KM and the closed left A-submodules N of M given by

$$L \to L \cap M$$
, $N \to K \cdot N$.

Since KM is a finitely generated A-module, KM satisfies the descending chain condition on submodules. Thus minimal closed submodules of M exist and are of the form $L \cap M$ for some minimal submodule L of KM.

Definition 2. Let $\mathscr{H}(M)$ denote the sum of all the minimal closed Λ -submodules of M. Let the closed socle H(M) of M be $\operatorname{Ann}_{R}(M/\mathscr{H}(M))$.

Lemma 2. $\mathscr{H}(\Lambda)$ is a two-sided ideal of Λ .

Let \mathscr{S} be the sum of the minimal submodules of KM. If $\mathscr{S} \neq KM$ then Ann_R(KM/\mathscr{S}) = 0 so by an easy argument Ann_R($M/\mathscr{K}(M)$) = 0. If $\mathscr{S} = KM$ and m_1, \ldots, m_l generate M over R then for each $i, m_i = \sum l_{i,j}$ where $l_{i,j} \in L_j$ with L_j a minimal Λ -submodule of KM. If we write $l_{ij} = m_{i,j}/r_{i,j}$ with $m_{i,j} \in M$ and $r_{i,j} \in R$ then $0 \neq r = \prod_{i,j} r_{i,j} \in H(M)$ so $H(M) \neq (0)$.

It follows that $H(M) \neq 0$ if and only if KM is semisimple.

Lemma 3. Let S be a multiplicative subset of R not containing 0. Then there is a one-to-one order preserving correspondence between the closed submodules N of M and the closed submodules N' of $S^{-1}M$ given by

$$N \rightarrow R_s N$$
, $N' \rightarrow N' \cap M$.

Lemma 4. Let S be a multiplicative subset of R not containing 0, then $H(S^{-1}M) = S^{-1}H(M)$.

Proof.

$$H(S^{-1}M) = \operatorname{Ann}_{R_S}(S^{-1}M/\mathscr{H}(S^{-1}M))$$

= $\operatorname{Ann}_{R_S}(S^{-1}M/S^{-1}\mathscr{H}(M))$ by Lemma 3
= $\operatorname{Ann}_{R_S}(R_S \otimes M/\mathscr{H}(M)) = R_S \otimes \operatorname{Ann}_R(M/\mathscr{H}(M)) = S^{-1}H(M).$

Lemma 5. Let p be a prime ideal in R, then $H(M_p) = H(M)_p$.

Lemma 6. $H(M) = \bigcap_{p} H(M_p)$ where p ranges over the maximal ideals of R.

Proof. By Corollary 4, Section 3.3, Chapter II of [2] we have $H(M) = \bigcap_{p} H(M)_{p}$. From Lemma 5, $H(M)_{p} = H(M_{p})$ and the lemma follows.

We have let $\mathscr{H}(M)$ be the sum of the minimal closed submodules of M.

Lemma 7. (a) $\mathscr{H}(M) = \sum_{f:N \to M} f(N)$ where N runs through all Λ -modules so that $K \otimes N$ is a simple A-module and f is any Λ -homomorphism. (b) If $M = M_1 \oplus M_2$ then $\mathscr{H}(M) = \mathscr{H}(M_1) \oplus \mathscr{H}(M_2)$.

Proof. Let N be a Λ -module with $K \otimes N$ simple over A and $f: N \to M$ a Λ -homomorphism. Then $1 \otimes f(K \otimes N) = K \otimes f(N)$ is trivial or a simple A-submodule of $K \otimes M$ so by Lemma 1 we have f(N) is trivial or a minimal closed submodule of M. Thus $\sum_{f:M \to N} f(N) = \mathscr{H}(M)$.

For part (b),

$$\mathscr{H}(M) = \sum_{f:N \to M} f(N) = \sum_{f_1 + f_2:N \to M} (f_1 + f_2)(N)$$

where $f_i = \pi_i f$, π_i the projection of M on M_i . Thus

$$\mathscr{H}(M) = \sum_{f_1+f_2:N \to \mathcal{M}} f_1(N) \oplus f_2(N) = \mathscr{H}(M_1) \oplus \mathscr{H}(M_2).$$

Proposition 1. (a) If E is a A-progenerator then H(E) = H(A).

(b) If Γ is an R-order Morita equivalent to Λ then $H(\Lambda) = H(\Gamma)$.

Proof. Let *E* be a Λ -progenerator, then $E \oplus E' = \Lambda^{(n)}$ for some *n*. By Lemma 7(b) we have $\mathscr{H}(E) \oplus \mathscr{H}(E') = \mathscr{H}(\Lambda^{(n)}) = \mathscr{H}(\Lambda)^{(n)}$. If $r \in \operatorname{Ann}_R(\Lambda/\mathscr{H}(\Lambda))$ then $r \in \operatorname{Ann}_R(\Lambda^n/\mathscr{H}(\Lambda^n))$ so one can check $r \in \operatorname{Ann}_R(E/\mathscr{H}(E))$ and $H(\Lambda) \subset H(E)$. Again, since *E* is a progenerator, $\Lambda \oplus \Lambda' = E^{(m)}$ for some *m* so arguing as above $H(E) \subset H(\Lambda)$.

For part (b) let *E* be a Λ -lattice and $\mu: {}_{\Lambda}\mathscr{M} \to {}_{\Gamma}\mathscr{M}$ a Morita equivalence. By symmetry together with (a) it suffices to show $H(E) \subseteq H(\mu(E))$. By Lemma 7(a),

$$\mu(\mathscr{H}(E)) = \mu\left(\sum_{f:N \to E} f(N)\right) = \sum_{\mu f: \mu N \to \mu E} \mu f(\mu N).$$

It follows that $\mu(\mathscr{H}(E)) = \mathscr{H}(\mu(E))$ since one can conclude from the diagram

that $K \otimes \mu N$ is a simple $A_1 = K \otimes \Gamma$ -module if and only if $K \otimes N$ is a simple A-module. Let P be a right Λ -progenerator giving the equivalence μ so $\mu(E) = P \otimes_A E$. Then

$$H(E) = \operatorname{Ann}_{R}(E/\mathscr{H}(E)) \subseteq \operatorname{Ann}_{R}(P \otimes_{A} E/P \otimes_{A} \mathscr{H}(E))$$
$$= \operatorname{Ann}_{R}(\mu(E)/\mu(\mathscr{H}(E))) = \operatorname{Ann}_{R}(\mu(E)/\mathscr{H}(\mu(E)) = H(\mu(E)).$$

Theorem 1. Let Λ be an R-order in a semi-simple algebra A over the quotient field K of R. If $H(\Lambda) = R$ then Λ is a direct sum of orders in the simple factors of A.

Proof. Let $A = A_1 \oplus \cdots \oplus A_i$ be a decomposition of A into its simple factors, let $\pi_i : A \to A_i$ be the projections, let $\Lambda_i = \pi_i(A)$, and $\overline{A} = A_1 \oplus \cdots \oplus A_i$. If L is a minimal left ideal of A, then L is an A_i -module for some i. Thus $L \cap A$ is an A_i -module and hence a \overline{A} -module. Thus $\mathscr{H}(A)$ is a \overline{A} ideal contained in A so $\mathscr{H}(A) \subseteq \operatorname{Ann}_A(\overline{A}/A)$. If H(A) = R then $\mathscr{H}(A) = A$ so $A = \operatorname{Ann}_A(\overline{A}/A)$. But $1 \in A$ so $\overline{A} = A$.

Theorem 2. Let Λ be a maximal order over the Dedekind domain R in the central simple algebra Λ over the quotient field K of R, then $H(\Lambda) = R$.

Proof. We assume first that R is a discrete valuation ring. If $A = M_n(D)$, D a division algebra over K, let $D = \bigoplus_{i=1}^n Kx_i$, $M = \sum_{i=1}^n Rx_i$. Then $\ell'_e(M) = \{d \in D \mid dM \subseteq M\}$ is an R-order in D, contained, say, in the maximal R-order E of D. Then $M_n(E)$ is a maximal R-order in A, and by Theorem 18.7 in [6], every other order which is maximal in Λ is of the form $aM_n(E)a^{-1}$, for some $a \in A$. Thus, by Proposition 1(b), we have that $H(\Lambda) = H(aM_n(E)a^{-1}) = H(M_n(E)) = H(E) = R$.

Assume now that R is a Dedekind domain. Then R_p is a discrete valuation ring for every maximal ideal P or R and Λ_p is a maximal R_p -order (see [6]). Hence, as above, $H(\Lambda_p) = R_p$, and by Lemma 6 we have that $H(\Lambda) = \bigcap_p H(\Lambda_p) = \bigcap_p R_p = R$.

Theorem 10.5 of [6] implies that the conclusion of Theorem 2 remains valid if A is a direct sum of central simple K-algebras.

Theorem 3. Let R be a complete local ring and let M be a projective lattice over the R-order A. Then H(M) = R if and only if M is a direct sum of minimal closed submodules. Thus $H(\Lambda) = R$ if and only if Λ is a direct sum of minimal left ideals.

Proof. If M is a direct sum of minimal closed submodules then H(M) = R. Conversely, suppose H(M) = R, then $\mathscr{H}(M) = M$. Since M is finitely generated we can find minimal closed submodules N_1, \ldots, N_t of M with $M = N_1 + \cdots + N_t$. The natural epimorphism $f: N_1 \oplus \cdots \oplus N_t \to M$ splits so $M \oplus M' \cong N_1 \oplus \cdots \oplus N_t$. By the Krull-Schmidt-Remak theorem M is isomorphic to a direct sum of some subset of $\{N_i\}$. We thank Irving Reiner for suggesting the following line of proof of the next result.

Theorem 4. Let G be a finite group of order n and R an integrally closed Noetherian domain with quotient field K. Then $H(RG) = n \cdot R$. Thus H(RG) = R if and only if RG is a maximal order in KG.

Proof. If char $K \mid n$ then KG is not semi-simple and H(RG) = nR = (0). Otherwise, A is separable K-algebra.

Let $A = \bigoplus_{i=1}^{n} Ae_i$, with $\sum_{i=1}^{n} e_i = 1$, $e_i e_j = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Let $\mathscr{H}(A)$ be the sum of the minimal closed left ideals I of A. Then $\mathscr{H}(A) = \sum_i I \cap A$, where I ranges over all minimal left ideals of A. Since A is semi-simple, I = Ae for some primitive idempotent e of A. Thus $\mathscr{H}(A) = \sum_e (Ae \cap A)$, where e ranges over all primitive idempotents of A. First we show that for every e_i we have $|G| e_i \in Ae_i \cap A$. If $e \in A$ is an idempotent of A, then since e is integral over R, R[e] is a finitely generated R-module and subring of A. Let M = RG a full R-lattice in A, then $M \cdot R[e]$ is a full R-lattice in A and so e is contained in some maximal R-order A_1 . Now since $RG \subseteq A_1$, then $|G| A_1 \subseteq RG$ and so $|G| \cdot e \in RG$ (see Theorem 41.1 in [6]). Hence $|G| e \in (Ae \cap A)$ for every idempotent in A. $|G| e_i \in Ae_i \cap A$, for every i, implies that $|G| \cdot 1 = |G| (e_1 + \dots + e_n) \in \mathscr{H}(A) = \sum_e Ae \cap A$ and so $|G| \cdot R \subseteq \mathscr{H}(A)$.

We now show the reverse inclusion. Let $a \in \mathscr{H}(A) \cap R$ and $e_0 = |G|^{-1} \sum_{x \in G} x$ be the central primitive idempotent in A.

Let $\overline{\Lambda} = RGe_0 \oplus \cdots \oplus RGe_n$ where the e_i are central primitive idempotents in KG. As we saw in the proof of Theorem 1, $\mathscr{H}(\Lambda)$ is a $\overline{\Lambda}$ -module so $\mathscr{H}(\Lambda) =$ $\mathscr{H}(\Lambda)e_1 \oplus \cdots \oplus \mathscr{H}(\Lambda)e_n$. Let $a \in \mathscr{H}(\Lambda)$. Then $ae_0 \in \mathscr{H}(\Lambda) \subset \Lambda$ so $a \in n \cdot RG$. Since $\mathscr{H}(RG) \subset n \cdot RG$, we have $H(RG) = \mathscr{H}(RG) \cap R \subset n \cdot R$.

Theorem 5. Let R be a Noetherian integrally closed domain and Λ a projective maximal R-order in $M_n(K)$ where K is the quotient field of R. Then $H(\Lambda)$ is contained in the singular locus of R.

Proof. It follows from Lemma 5 that it suffices to show $H(\Lambda_p) = R_p$ for every regular prime ideal p of R. But Λ_p is projective and maximal over R_p so by Theorem 4.3 of [1], $\Lambda_p = \operatorname{Hom}_{R_p}(E, E)$ with E a finitely generated projective R_p module. By Lemma 2 of [3], $H(\Lambda_p) = R_p$.

We conclude by giving an example of an order Λ over a discrete valuation ring R such that $H(\Lambda) = R$, yet Λ is not a direct sum of minimal closed left ideals. Let

$$\Lambda = \left\{ \begin{pmatrix} a+5e & b+5f \\ -b+5g & a+5h \end{pmatrix} \middle| a, b, e, f, g, h \in \mathbb{Z}_5 \right\}.$$

View Λ as a $\mathbb{Z}_{(5)}$ order in $M_2(\mathbb{Q})$. The elements

$$\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$$

generate minimal closed left ideals in Λ and

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$$

so $H(\Lambda) = R$. However, one can calculate directly that Λ has no idempotents but

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

so Λ is not a direct sum of minimal closed left ideals.

References

- [1] M. Auslander and O. Goldman, Maximal Orders, Trans. Amer. Math. Soc. 97 (1960) 1-24.
- [2] N. Bourbaki, Elements de Mathematique, Algèbre Commutative (Hermann, Paris, 1964).
- [3] F.R. DeMeyer, The closed socle of an Azumaya algebra, Proc. Amer. Math. Soc. 78 (3) (1980) 299-303.
- [4] F.R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Math. No. 181 (Springer, Berlin-New York, 1971).
- [5] D. Haile, The closed socle of a central separable algebra, J. Algebra 51 (1978) 97-106.
- [6] I. Reiner, Maximal orders (Academic Press, New York, 1975).
- [7] K.W. Roggenkamp and V.H. Dyson, Lattices over Orders 1, Lecture Notes in Math. No. 115 (Springer, Berlin-New York, 1970).